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Non-CPMG Fast Spin Echo with Full Signal
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The standard Fast Spin Echo sequence used in MR imaging relies
on the CPMG condition. A consequence of this condition is that only
one component of the transverse magnetization can be measured.
To counter this, some phase modulation schemes (XY, MLEV . .) for
the pulse train have been proposed, but they are useful only over a
very restricted range, close to π, of the refocusing pulse rotation an-
gle. Some other solutions not relying on phase modulation have also
been suggested, but they destroy one half the available signal. Revis-
iting the phase modulation approach, J. Murdoch (“Second SMR
Scientific Meeting,” p. 1145, 1994) suggested that a quadratic phase
modulation could generate a train of classical echoes. We show here
that indeed a quadratic phase modulation has a very suitable prop-
erty: after an adequate change of frame, the dynamic of the system
composed of all the protons situated in one pixel can be seen as sta-
tionary. If the parameter of the quadratic phase modulation is well
chosen, it is then possible to put the dynamic system in a combina-
tion of two suitable states and obtain a signal identical to the signal
of a classical spin echo, at least for nutation of the refocusing pulse
higher than, approximately, two radians. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

1.1. Aim and Context of This Work

The Fast Spin Echo (FSE) sequence, or RARE (1), relies
on the CPMG (Carr–Purcell–Meiboom–Gill) conditions (2) for
generating a long train of spin echoes even when the rotation
angle θ of the refocusing pulses is not equal to π . One of these
conditions states that the initial magnetization after the excita-
tion pulse must be aligned with the axis of the refocusing pulses.
Any component of the magnetization perpendicular to this ideal
direction is destroyed very rapidly after some echoes, as is de-
picted in Fig. 1. This figure demonstrates that the fast spin echo is
very different from the classical Spin Echo experiment in which
one component of the initial magnetization is maintained con-
stant, while the perpendicular component alternates in sign with
each echo.

This has some important practical consequences: procedures
which rely on an auxiliary phase encoding, such as flow encoding
and chemical shift separation, are not feasible with FSE. Other
procedures such as diffusion weighting or T ∗

2 contrast, in which a
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parasitic phase modulation appears due to eddy currents, patient
movement, or susceptibility effects, are also difficult to perform
with FSE.

In the past decade, the MR imaging community has developed
two related solutions to this problem (3, 4). The drawback of
both solutions is that they give up, by principle, one half of the
signal. Indeed as explained in Norris et al. (3), the sensitivity to
the initial phase may be explained by the fact that the echo signal
can be seen as the addition of two equal magnitude signals, with
a phase which is equal to the phase of the initial magnetization
for one signal, and opposite to that for the other signal. The
Norris solution consists in eliminating, for instance by crusher
gradients, one of these signals, resulting in an echo signal whose
magnitude is indeed independent of the initial phase, but which is
only one half of the signal obtainable when the CPMG condition
is fulfilled. The Alsop solution (4) is more involved and reduces
the signal oscillations which appears, in addition to the signal
loss, in the Norris solution. But here, once again, one half of the
pathways are discarded.

However, before that, Maudsley (5) and Guillon et al. (6)
had a more ambitious target and tried to obtain a high, stable
signal for both components of the initial magnetization. They
used modulation schemes with pulses along the x and y axis
(hence the generic name “XY” of these modulations) in a se-
quence determined by a recursive expansion procedure similar to
the procedures developed for generating decoupling sequences.
Unfortunately even the most sophisticated of these schemes can-
not compensate for a large error of the refocusing pulse rotation
angle. More recently, Murdoch (7) suggested that a quadratic
phase modulation can act to preserve echo intensity in a spin-
echo sequence.

We have explored this route (8) and applied it in practice
(9). We want here to justify theoretically the use of a quadratic
phase modulation. This was already presented (10), but the sub-
ject probably needs a more detailed explanation. Stated without
too much mathematics, the theory relies on the equivalence of a
quadratic phase modulation to a linear frequency sweep, a well-
known principle in signal processing. Then, translating the co-
ordinates at the same speed as this frequency sweep, one obtains
a stationary system. This stationary system can be decomposed
along its eigenvectors. If we can put the system state into the
subspace spanned by the eigenvectors corresponding to certain
8
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FIG. 1. Evolution of the transverse magnetization during a CPMG exper-
iment, for echo number i ranging from 1 to 32 and rotation angle θ of the
refocusing pulse varying from 0 to 180◦ with a 30◦ step. At the end of the
excitation pulse, or echo number 0, the magnetization is assumed to have a mag-
nitude of 1. At top, the initial magnetization is along the axis x of the refocusing
pulse: the signal tends toward sin(θ/2). At bottom, the initial magnetization is
along y; for clarity, the magnetization has been multiplied in this case by (−1)i .

eigenvalues (1, −1 in the classical O3 representation, or j, − j ,
with j = √−1, in the spinor or SU2 representation) we obtain
some similarity with a classical spin-echo experiment. The sig-
nal is composed only of one constant part and one alternating
part. These two signals have large and equal magnitude only for
certain values of the frequency sweep rate. We give these values.
We also determine a small phase sequence for the first few refo-
cusing pulses which puts the system in the appropriate subspace.
This gives the desired results down to a refocusing angle of 115◦,
i.e., far below what is possible with other known phase modu-
lations. The reader primarily interested in the practical aspect
of this work, rather than the mathematical basis, should read up
to section “Setting the Receiver Phase” (Subsection 2.2), with

Fig. 3 and then jump to the Subsection 3.6 “Resulting Optimal
Phase Modulation.”
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1.2. Overview of the Work

Section 2 is devoted to the description of a train of echoes
when the phase of the refocusing pulses varies according to an ar-
bitrary law; after some preliminaries needed to define the action
of crushing present in any fast spin echo sequence (Section 2.1)
we answer the very practical question of how to set the receiv-
ing phase when the emission phase is varying (Section 2.2) and
find that we can make the equations depend not on the emission
phase itself but only on its first order difference (Section 2.3). In
other words, we transform a phase modulation into a frequency
modulation. But observing the system in a translating frame one
can furthermore make the equations depend on the second or-
der difference of the emission phase. Section 3 is devoted to the
particular case of a quadratic phase modulation; because such
a modulation has a second order difference which is constant,
the equations describing the system dynamics become station-
ary (Section 3.1). Subsection 3.2 shows how to calculate the
eigenfunctions of such a stationary system. In that subsection
we do not choose a representation for the elementary rotations,
but rather treat them as symbolic operators. To perform numeric
computation we have the choice between the O3 representation
(our classical 3D space) or the SU2 group where a rotation is ex-
pressed by two complex numbers. We prefer, here, this last and
more compact solution and Subsection 3.3 describes the com-
putation of the eigenfunctions of the stationary system in this
representation. This task is performed in Subsection 3.3.2, after
a succinct reminder of the SU2 (or Quantum Mechanics) formal-
ism in Subsection 3.3.1. In Subsection 3.3.3 we remined that the
eigenfunctions being a complete orthogonal function basis, we
can always express the system state in this basis. We are now in
position, in Subsection 3.4, to tackle the problem on hand: ob-
taining a signal behavior similar to the perfect refocusing case
even when the nutation angle is not π . We show that for obtaining
this behavior, we must put the system in the subspace spanned
by two eigenfunctions only. We show in Subsection 3.4.2 that
this is the case for a perfect π pulse for which the initial flip pulse
puts the system directly along the eigenfunction relative to the
eigenvalue − j . Then, in case of a spurious phase introduced
between the excitation pulse and the RF refocusing pulse train,
we show that the system state stays in the subspace spanned by
the two eigenfunction j, − j . In the next subsection, 3.4.3, we
simply suppose that, in the absence of spurious phase, we have
been able, after a preparation period lasting some echoes, to put
the system state along the − j eigenfunction, even when the nu-
tation angle of the refocusing pulses is not π . Then, again, the
system state will be in the subspace of eigenfunctions relative
to j, − j , whatever the spurious dephasing introduced between
the flip pulse and the train of echoes. But an eigenfunction is
always defined up to an arbitrary phase only. We must choose
this phase. In the next subsection, we take interest in the signal
generated (this step would not have been necessary if we had

used the O3) and find out that the signal is composed of one con-
stant part and one alternating part, the proportion between the
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two parts depending on the spurious phase introduced between
the excitation pulse and the echo train. But if the constant part
is given, the alternating part magnitude is dependent on the − j
eigenfunction phase factor. We maximize that alternating part,
now entirely fixing the system state we will use as a target for
the preparation period. But before embarking into that, we have
still another parameter to determine: the second order finite dif-
ference of the quadratic phase modulation. That is the aim of
Section 3.4.6, where we obtain this parameter by scanning a
large set of possible values. It then suffices to determine the
preparation period. This is presently done by a classical opti-
mization programs, with a cost function defined in Section 3.5,
the results of which are presented in Section 3.6 in the form of
seven emission phase angles to apply to the first seven refocusing
pulses. Section 4 gives an overview of the reconstruction process
used in single shot acquisition. Section 5, Experimental Results
and Discussion, summarizes the success but also the weakness of
the present solution, and suggests some future developments.

2. REPRESENTATION OF A PHASE
MODULATED SPIN-ECHO

2.1. Preliminary Remarks

Figure 2 shows the typical sequence that we will use. Only the
excitation block and the first echo space (from the first refocus-
ing pulse to the next) is shown; the subsequent echo spaces are

FIG. 2. The kind of sequences considered here. Nominally the center of the
excitation pulse coincides with the reference time and the sequence is identical
to the CPMG sequence, with gradients and B0 integrals matching on each side
of a refocusing pulse. Depicted here is the example of a T ∗

2 acquisition, where
the time between the excitation pulse and the reference time has been elongated,

resulting in an uncontrolled phase at the reference time. The rest of the sequence
is not altered in any way, except that each refocusing pulse is emitted with a
varying reference phase.
E ROUX

repeated identically to the first echo space, except, perhaps, for
the encoding gradient lobes which vary. As can be seen, we do
not make any change to the classical CPMG imaging sequence.
Particularly, the integral of the gradients are kept equal on each
side of the refocusing pulse, generating an echo at the middle
of the echo space. As usual the exception to this symmetrical
waveform is found on the phase-encoding direction where the
phase-encoding lobe is compensated by an opposite lobe just
before the next refocusing pulse. We denote by 2T the duration
of one echo space. We call reference time, and also “echo 0,”
the position in time situated T before the center of the first re-
focusing pulse. In a standard CPMG experiment it is here that
the center of the excitation pulse should be placed in order to
eliminate the influence of the main field inhomogeneity �B0.
The depicted sequence is a T ∗

2 experiment and the period sepa-
rating the center of the excitation pulse from the reference time
has been elongated, giving at echo zero an unknown phase mod-
ulation of the object, denoted by χ . In other types of contrast,
the phase modulation χ can be due to many other phenomena:
for instance patient movement during a diffusion preparation in-
serted between the excitation pulse and the reference time. This
phase modulation amounts to several 2π turns over the imaging
volume, and thus the CPMG condition is violated completely
resulting in a null signal at several positions in the volume.

We call Kx , Kz the integral of the gradients from the center of
a refocusing pulse to the center of the subsequent read period,
multiplied by γ the magnetogyric ratio (without any sign). We
could add also a Ky integral, if a constant crusher lobe, in ad-
dition to the phase-encoding lobes, were to exist on the y axis.
For a given geometric position, these gradient integrals induce,
between the center of a refocusing pulse and the following echo,
a precession ω that we can express in radians by

ω(x, y, z) = Kx x + Ky y + Kzz + γ�B0(x, y, z)T . [1]

Despite the fact that ω in this equation is an angle, we may
take the liberty to call it a resonant angular frequency or even
resonant frequency. This is to be understood as a resonant an-
gular frequency which would give that angle of precession if
applied continuously in the time unit T .

The gradient of the function ω(x, y, z) defines at each point a
direction of crushing (which is, for large crusher gradients, virtu-
ally aligned with 	K = (Kx , Ky, Kz)t ), and also a local crushing
wavelength λc corresponding to a phase variation δω of 2π .
Apart from regions where the gradient of the main magnetic
field becomes significant, this crushing wavelength is not very
different from λc = 2π/|K |. The crusher gradients are adapted
such that the crushing wavelength is small enough in comparison
to the resolution of the image and the slice thickness. A ratio of
one half between the crushing wavelength and the resolution is
generally considered necessary. Also, as is usual when imaging
a phased object, one must suppose that the phase modulation,

χ (x, y, z) in our case, is not varying too fast in the length of one
resolution, otherwise this phase modulation would induce, in
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the reconstructed image, a magnitude modulation as well. The
crushing wavelength being smaller than the resolution, one then
admits that at the time of echo zero, the magnetization is slowly
varying in the scale of a crushing wavelength.

We intend to obtain, in spite of the phase χ , and although
the refocusing angle θ is not π , a sequence of echoes in which
one component of the initial transverse magnetization generates
a constant signal, whereas the other perpendicular component
gives an alternating signal. We note that this is possible because
the echo signal is proportional to the average, over one crush-
ing wavelength, of the transverse magnetization. One can thus
imagine a distribution of the magnetization inside one crushing
wavelength which on average mimics the behavior of a standard
spin-echo with a π refocusing pulse, but of course with a re-
duced signal. We intend to realize this by phase modulating the
train of refocusing pulses.

2.2. Setting the Receiver Phases

When varying the emission phases, i.e., the phase of the carrier
during the RF pulses, the first question which arises in practice
is how to set the phase of the carrier during the acquisition pe-
riod. In Fig. 3 the phase of the first refocusing pulse is denoted
φx1, the second one φx2, and so on. We suppose, for the mo-
ment, these emission phases to be given, and remark that these
phases, with the addition of the initial phase χ of the magne-
tization, determine entirely the evolution of the magnetization
in the subsequent echoes (for a constant rotation θ of the refo-
cusing pulse). Hence the determination of the receiver phases
which follows has the aim of rendering the expression for the
received signal as simply as possible. We denote by φr1 the car-
rier phase setting during the first read period (echo 1), φr2 the
phase during the second read period and so on. And, although

FIG. 3. If the phase of emission of each refocusing pulse is given, how
should one set the phase of the receiver during each receive period? Such that, if

the rotation angle of the refocusing pulse were π , an initial magnetization aligned
with a chosen direction would generate a constant signal for every subsequent
echoes.
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there is no signal sampling at that time, we define a reference
receiver phase φr0 at echo 0. We would like (in the case of the
nominal refocusing angle of π ) the dynamics of the magnetiza-
tion seen in the receiver frame to be simply the same as when
no phase modulation is used, i.e., one component of the mag-
netization staying the same, the other one changing sign every
other echo. This is realized, after arbitrarily setting the direc-
tion φr0 of the magnetization elected to stay constant in the new
frame, if we follow that magnetization under the influence of
the successive π pulses. This readily fixes the set of receiver
phases by

φr i + φr i−1

2
= φx i . [2]

Of course if the emission phases φx are given, the arbitrariness
with which we can choose the initial receiving phase φr0 presents
a difficulty; one can add any sequence φr0 ×(1, −1, 1, . . .) to the
receiving phase sequence. To solve this ambiguity one can try
to eliminate or minimize that oscillation. In practice though, we
will take as the driving quantity not the emission phases but the
angle separating one acquisition phase from the next emission
phase, which we note δi , and use this quantity to generate the
two other phases (see Fig. 3). Hence

φx i = φr i−1 + δi , [3]

and

φr i = φx i + δi . [4]

The only arbitrariness left is a constant phase φr0 that we can
add to both the φx and the φr . This is not relevant as it is just a
change of the phase of the central carrier. The other advantage
of using δi is that it can be merged with the rotation ω, as we
see now.

2.3. From Phase Modulation to Frequency Sweep

In this subsection we write the rotation from one echo to the
next in terms of symbolic rotation operators. Rn(φ) represents
a rotation of angle φ around the unit vector (in the 3D space) 	n,
with some obvious notation like Rz(φ) representing a rotation
around the axis z. We can restrict ourselves to taking a snapshot
of the system at the echo time. From that knowledge we can
deduce, by simple precession, the state at any moment of the
echo space, up to just before or just after the RF pulses, which
themselves are assumed to be applied instantaneously.

At a given position in space, at resonant angular frequency ω

along the crushing direction, and between echo i − 1 and emis-
sion i , the magnetization undergoes a rotation around z: Rz(−ω),
seen in the central rotating frame. The minus sign comes from

the fact that we are here considering protons, and we defined
ω as a function of an unsigned magnetogyric ratio. But if we
place ourselves in a frame with a reference axis (say x) aligned
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with the reception reference axis at echo i − 1 and then with the
emission reference axis at the center of pulse i , we see the mag-
netization rotating by Rz(−ω − δi ). Identically, and still viewing
the magnetization in the new rotating frame whose axis x stays
aligned with the emission and reception reference axis, the ro-
tation undergone by the magnetization between emission i and
echo i is: Rz(−ω − δi ). That leaves us with the characterization
of the rotation induced by the RF emission when it is seen in a
frame whose axis x is aligned with the B1 field. Naively one is
tempted to say that the rotation is Rx (θ ). But one can argue that,
the RF pulse being selective, this is only true at the center of the
slice. Particularly, away from this center the axis of the rotation
is tilted toward the axis z. However one can answer that this
effect can always be taken into account by applying the same
rotation around z on each side of the pulse. That precession can
be included in δi , or even in ω if it is a constant, which is the
case if the RF refocusing pulse itself is not varied. So the native
vision is exact. Hence the rotation from echo i − 1 to echo i in
the new rotating frame is

Ri−1,i = Rz(−ω − δi )Rx (θ )Rz(−ω − δi ),

= R̂(ω + δi , θ ). [5]

In the last line of the equation we have written the echo to
echo rotation in a way to emphasize the fact that the rotation is
not a function of ω and δi separately but of (ω + δi ); i.e., it is a
constant rotation

R̂(ω, θ) = Rz(ω)Rx (θ )Rz(ω), [6]

translated along the resonant frequency axis, or crushing direc-
tion by −δi . We will call the rotation R̂(ω, θ ), whose center is
by convention at ω = 0 where the gradients have no effect, the
central rotation. Hence the rotation R̂(ω + δi , θ ) is the central
rotation translated to ω = −δi .

2.4. One Step Further: The Sweep Velocity

Let 	vi be the state of the system, at resonant angle ω, at echo
i (this state can be for instance the magnetization, i.e., three
real values, at each ω if we use the classical representation of
rotations). From Eq. [5], one can write:

	vi (ω) = R̂(ω + δi , θ )	vi−1(ω), i = 1 . . . . [7]

Let us define the quantity �i = ω + δi ; this defines a new,
translating, frame whose origin �i = 0 coincides at each echo i
with the center ω = −δi of the rotation R̂(ω + δi , θ ). Then, let
us apply a change of variable to try to express all quantities in
terms of �i .

For that let us first pose the following:
	v0(ω) = 	w0(ω),
E ROUX

and

	vi (ω) = 	wi (ω + δi ) = 	wi (�i ), i = 1 . . . . [8]

To be able to use Eq. [8] for i = 0, we will have to set δ0 = 0.
Applying this change of variable to Eq. [7] one obtains

	wi (�i ) = R̂(�i ) 	wi−1(�i − δi + δi−1), [9]

where we see that only the first difference �i = δi −δi−1 of the δ

intervenes. We consider now �i to be the independent variable
in place of ω, and we replace the notation �i by �

	wi (�) = R̂(�, θ ) · S(�i ) 	wi−1(�), [10]

where

�i = δi − δi−1, i = 2 . . . , [11]

and

�1 = δ1; [12]

after having defined S(�i ) as the translation operator by �i .
We will preferably use Eq. [10] rather than Eq. [7]. Indeed,
being given (φr0, �1, �2, �3 . . .) is equivalent to being given
(φr0, δ1, δ2 . . .). Also, the signal at an echo time is the average
value of the transverse magnetization over one crushing wave-
length, and thus it is the same whether it is calculated from 	vi

or 	wi , these two values being only a translation from each other
(and periodic with a period of one crushing wavelength). So we
can directly use 	wi to calculate the signal at echo i and can forget
	vi altogether.

3. QUADRATIC PHASE MODULATION

3.1. A Stationary System

Let us try a constant sweep velocity �i = �. Using Eqs. [11],
[3], and [4] gives δi = �i , φr i = �i(i + 1), φx i = �i2. Let
us change �1 and take for instance �1 = � + δ; this gives
δi = �i + δ, φr i = �i(i + 1) + 2δi , φx i = �i2 + (2i − 1)δ.
Finally, we can change φr0 to add an identical constant to all
phases. Hence we can simulate the action of any quadratic
modulation of the emitter phases, with our three parameters �,
�1, φr0.

In all cases, at least after the first echo (i > 1), when we place
ourselves in the frame translating at a constant rate −� between
each echo, � = ω + �i , we obtain a system in Eq. [10] which
is stationary,
	wi (�) = [R̂(�, θ ) · S(�)] 	wi−1(�). [13]
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3.2. Constructive Definition of Eigenvectors

Having in hand a stationary system, it is natural to try to
represent it by its eigenvectors. Let us try to build one eigenvector
	u corresponding to a given eigenvalue λ (supposing we know the
set of eigenvalues). One must realize that Eq. [13] corresponds to
a dynamic system with very large dimensions, and we will rather
use the term eigenfunction rather than eigenvector. Let us choose
one particular frequency �0 and suppose that the eigenfunction
at that point is 	u(�0). This is a three-dimensional real vector if
one works with magnetization (O3 formalism), but will be a two-
dimensional complex vector if we use spinors (SU2 formalism).
In this subsection we do not yet make the choice between the
two representations. How will 	u(�0) be transformed by Eq. [13]
at the next echo? First, it will be translated by �, hence it will
be now seen at position �1 = �0 + �; then it will undergo
the rotation R̂ at that position, becoming R̂(�1)	u(�0). But, by
definition of an eigenfunction relative to an eigenvalue λ, the
new value of the state vector at that position �1 should be equal
to λ	u(�1). Hence we must have

λ	u(�1) = R̂(�1)	u(�0). [14]

After dividing this equation by λ, one is able to determine the
value of the eigenfunction 	u(�1), at �1 = �0 +�, if its value at
�0 is known. But continuing the same procedure one can find
its value at �2 = �1 + �, and so on. Thus all the values of the
eigenfunction situated on the “comb” of frequencies

�l = �0 + l� [15]

can be deduced from 	u(�0), by

	u(�l) = 1

λl
Rl 	u(�0); [16]

with the definitions

Rl = R(�l) = R̂(�l)R̂(�l−1) . . . R̂(�1); [17]

or, in recursive form,

R(�l) = R̂(�l)R(�l−1). [18]

Let us now suppose that � is restricted to be a rational number,

� = 2π
n

d
; [19]

with n and d two integers without common divisor. Hence the
successive frequencies of the comb defined in Eq. [15] become
�l = �0 + 2π
n

d
l, [20]
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with the remark that the integer nl in the above equation is to be
taken modulo d. The integers generated by k = nl (d) span in a
one to one manner the set of integer 1 . . . d. Notice also that the
sequence is cyclic, with period d. So after having applied our
previous procedure d times, k = nl has spanned the whole set of
d values k = 1 . . . d, and for l = d the corresponding frequency
�d is again equal to �0. Hence 	u0 is not arbitrary and must
satisfy 	u(�d ) = 	u(�0):

	u(�0) = 1

λd
R(�d )	u(�0). [21]

We will call R(�d ) the “cycle rotation.” It is indeed the rotation
undergone by the particular magnetization situated at the reso-
nant frequency ω = �0 during one whole cycle of d successive
rotations. Rd is a 3 × 3 real orthogonal matrix in the O3 formal-
ism or a unitary 2 × 2 complex matrix in the SU2 formalism.
From Eq. [21] one deduces that 	u(�0) must be one of the eigen-
vectors of Rd . Let µ be one of the eigenvalues of this matrix
(|µ| = 1), and 	uµ its associated eigenvector. Equation [21] im-
plies λd = µ. From µ we thus can generate d different possible
eigenvalues of the system in Eq. [13],

λm = (µ)1/de j 2π
d m, m = 1 . . . d. [22]

The corresponding eigenfunctions are calculated according to
Eq. [16],

	uµ,m(�l) = λ−l
m Rl 	uµ. [23]

Hence the eigenfunctions of the system in Eq. [13] are eas-
ily constructed numerically, on the comb �k = �0 + k 2π

d . One
notes that, as usual, each eigenfunction is still undetermined
by a global phase factor applied for instance to 	uµ, but all
the components 	u(�0 + 2πk/d), k = 1 . . . d are now linked to
each other. However the eigenfunctions on two different combs,
each comb corresponding to a distinct reference frequencies
�0 ∈ [0, 2π/d], are independent of each other and could, in
principle, be multiplied by two unrelated phase factors. We ac-
tually will set these phases such that the resulting function of �

be the most continuous possible.

3.3. Computation of the Eigenvectors in SU2

From this point on we will use the SU2 formalism, which
more efficiently carries the same information as the classical
representation using magnetization (the O3 approach).

3.3.1. Quick overview of the spinor formalism. The reader
not proficient with the SU2 formalism should consult a textbook
on quantum mechanics (11), application of spinor or Cayley
Klein (CK) parameters (12, 13), or even quaternions (14). We

give here only the necessary notations. We use SU2 matrices,
denoted Q, and density (or vector) matrix denoted σ , of the
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form, respectively

Q(α, β) =
[

α −β̄

β ᾱ

]
, σ (z, X ) =

[
z X̄
X −z

]
. [24]

The density matrix σ (z, X ) represents a vector in the classi-
cal 3D space with projection z along the z axis, and X = x + j y
projection in the x, y plane. Under a rotation this 3D vector is
transformed into another vector z′, X ′. This rotation is expressed
with a multiplication on the left by an SU2 matrix and a mul-
tiplication on the right by the conjugate transpose of this SU2

matrix

σ (z′, X ′) = Qσ (z, X )Q∗. [25]

The most general rotation of angle � around an axis 	n
whose coordinates along z and the xy plane are, respectively,
nz and nxy = nx + jny , is represented by Qn(�) = Q(C −
jSnz, − jSnxy) with C = cos(�/2) and S = sin(�/2). In this
very general case, the explicit writing of the full SU2 matrix,
rather than the use of a notation Q may be more appropri-
ate because, by separating the real part of the parameter α,
one can highlight the vector matrix representing the axis of the
rotation

Qn(�) = C1 − jSσ (nz, nxy). [26]

3.3.2. Spinor computation of the eigenvectors. We now rep-
resent all rotations in the SU2 form and use the same notation
for the symbolic operator and its SU2 matrix expression (with,
when it is necessary to define the parameters values, Q(α, β) be-
ing understood as a short cut for the full SU2 matrix as defined
by Eq. [24]). In SU2 the central rotation defined in Eq. [6] and
used in Eqs. [10], [13] is written

R̂(�, θ ) =
[

ce j� −js

−js ce− j�

]
, [27]

with c = cos(θ/2), s = sin(θ/2). Thus, each elementary rotation
R̂(�l) in Eq. [17] is represented by R̂(�l) =Q(c exp( j�l),
− js).

Supposing that Rl is represented by a matrix R(�l) =
Q(αl , βl), its computation is performed recursively by the equi-
valent of Eq. [18] in spinor form. This way, we obtain the cycle
rotation R(�d ) in Eq. [21]. The diagonalization of R(�d ) is
easy: one begins by writing it in the form R(�d ) = C1 − jSσV ;
then the vector matrix σV is factored into σV = UσzU ∗, with
σz = σ (1, 0). One verifies immediately that the first column of
U , which we denote 	u = [u, v]t , is the eigenvector of Rd with
an eigenvalue µ = C − jS; the second column of U (noted 	u⊥)

is the eigenvector with an eigenvalue µ̄ = C + jS. The detailed
computation in terms of the CK parameters αd , βd of Rd is
given in Appendix A. Further, we show in Appendix B, by us-
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ing a polynomial representation (15) that, if d is odd, and for
sufficiently high cycle energy

d × θ2 � 1, [28]

with θ , the rotation angle of the refocusing pulse, expressed in
2π turns, we have C � 0. That means that the rotation angle of
the cycle is close to π , and hence the eigenvalues are µ � − j and
µ � j . Note that one can demonstrate in a similar, but somewhat
more involved, manner that if d is a large even number, the
cycle rotation angle is 2π (transparent rotation). This case is
not considered in this article any further, and from now on, d is
supposed odd (the results for two consecutive d, hence odd and
even, can be made similar; but the case d “even” necessitates
dealing with degenerated eigenstates). From all the values of λm ,
or λ̄m we chose the one which is the closest to − j . This implies
choosing the eigenvector of the cycle rotation corresponding to
µ = − j if d = 4q+1, or to µ = j if d = 4q−1. We still call 	u the
corresponding cycle eigenvector, after eventually having made
the necessary swap between the two column vectors 	u, 	u⊥ of the
matrix U . And then we choose m = 0 in Eq. [22], and use Eq. [23]
with λm = − j to obtain the “main” eigenfunction that we denote
	u− j (�l). We could similarly generate the eigenfunction 	u j (�)l ,
but it is easily found that the two vectors are deducible from each
other as the two column vectors of an SU2 matrix. For the rest of
this article we will denote by U0(�l) the matrix composed of the
concatenation of the two eigenfunctions (2D vectors) 	u− j , and
	u j , i.e., U0(�l) = [	u− j | 	u j ], or in terms of the individual scalar
components of 	u− j = [ul , vl]t ,

U0(�l) = [	u− j | 	u j ] =
[

ul −v̄l

vl ūl

]
. [29]

One could generate the other 2d − 2 eigenfunctions for
m �= 0 by multiplying 	u− j (�l), and 	u j (�l) with the scalar
exp(− j 2π

d ml) but, to keep a SU2 matrix structure, it is logi-
cal to group together the two eigenfunctions corresponding to
two eigenvalues which are complex conjugated to each other.
All eigenfunctions can then be obtained, from U0, by simple
matrix multiplication,

Um(�l) = U0(�l)Rz

(
2π

d
ml

)
, [30]

for the values of m = 1 . . . d − 1.
Also each eigenfunction is determined with an arbitrary phase

factor. By convention, and according to Appendix A, we choose
the first component (u0), of 	u− j , at the reference frequency of the
comb �0, to be real. We can then multiply the whole eigenfunc-

tion 	u− j (�l) by a phase factor exp(− jψ0/2). By convention we
then multiply 	u j (�l) by exp( jψ0/2), such that the new U0(�l)
is still a SU2 rotation matrix.
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3.3.3. Decomposition of the system state on the eigenfunc-
tions. We are now in possession of 2d eigenfunctions by
which we can express any distribution of 2D complex vec-
tor (spinor) distribution 	w(�l) on the d frequency point �l ;
but again to maintain the SU2 type of symmetry, we will pre-
fer to say that we can decompose any SU2 matrix distribution
W (�l) = [ 	w(�l) | 	w⊥(�l)] by

W (�l) =
d−1∑
m=0

Um(�l)�m . [31]

Each “coefficient” matrix �m is expressibly by two complex
numbers �m = Q(γm, σm). In the following subsection we will
consider W (�) to represent the rotation applied, at frequency �,
by all the actions, RF pulse, gradient lobes, eventually spurious
de-phasing χ , starting with the thermal equilibrium. That is to
say we include the π/2 excitation pulse in the rotation. We call
this rotation “global” rotation. Hence, supposing that we know,
on the comb of frequencies as defined in Eq. [20], the global
rotation W (�l), we can decompose it in the form of a sum such
as Eq. [31]. Due to the orthogonality of the eigenfunctions, these
coefficient matrices (or the scalar coefficients γl , σl) are easily
found,

�m = 1

d

d−1∑
l=0

Rz

(
− 2π

d
ml

)
U ∗

0 (�l)W (�l). [32]

3.4. Mimicking a Perfect Refocusing Pulse

3.4.1. Restriction to a subspace. We will not need the gen-
eral decomposition in this paper. We indeed suppose that at a
certain echo numbered p (p standing for “preparation”), the SU2

matrix representing the global rotation is expressible uniquely
by U0, and the above decomposition in Eq. [31] is reduced to
one term only,

W (�l , p) = U0(�l)�. [33]

Note that the RF pulse train from the RF refocusing pulse 1
to the RF pulse p is to be determined, but starting from the echo
p we suppose that the modulation of the RF train becomes pure
quadratic with the sweep velocity �. Hence the system follows
Eq. [13], and as U0 is composed of the eigenfunctions relative
to the eigenvalues j , − j the subsequent evolution of the global
rotation at echo p + i is

W (�l , p + i) = U0(�l)Rz(iπ )�. [34]

To find out what the meaning and value of the coefficient
matrix � is, let us have a look first to the special case of a perfect
refocusing pulse equal to π .

3.4.2. Restriction to a subspace, the perfect refocusing pulse

case. When the refocusing pulse is a π pulse along x , the
central rotation R̂(�) in Eqs. [10], [13], and [27] is repre-
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sented by the SU2 matrix Q(0, − j) and has no � dependence.
The eigenvalues of such a matrix are indeed − j, j , with the
matrix of eigenvectors being U0 = Q(1, 1)/

√
(2) = Ry(π/2).

This means that right after the excitation pulse, which is
represented by Ry(π/2), without any further preparation,
the rotation from thermal equilibrium verifies Eq. [33] with
� = 1. But how is this result changed if a rotation by χ

around z is inserted between the excitation pulse and be-
fore echo zero? Then the rotation from thermal equilibrium
to echo 0 is W0 = Rz(χ )Ry(π/2). But using the fact that
Ry(−π/2)Rz(χ )Ry(π/2) = Rx (−χ ) one finds that W0 can again
be expressed in the form of a combination of the eigenvec-
tors U0: W0 = Ry(π/2)Rx (−χ ) = U0 Q(cos(χ/2), j sin(χ/2)).
Hence the global rotation at echo zero is expressible as in Eq. [33]
with � = Rx (−χ ).

3.4.3. Restriction to a subspace, generalization to other nuta-
tion angles. For generalization we can suppose that, by careful
design, we made the first p refocusing pulses, combined with
the initial excitation pulse Ry(π/2), induce a global rotation at
echo p which is exactly equal to U0(�l). Hence, in the absence
of spurious dephasing χ , the rotation P(�l) induced by the first
p refocusing pulses and dephasing periods, satisfies,

U0(�l) = P(�l)Ry(π/2). [35]

Supposing now there is a precession χ inserted right
after the excitation pulse, the global rotation at echo p
is Wp(�l , p) = P(�l)Rz(χ )Ry(π/2). Eliminating P between
these last two relations, we find again, after the same ma-
nipulation of Rz(χ ), that W (�l , p) = U0(�l)Rx (−χ ). And the
subsequent evolution at echo p + i is given by Eq. [34]:
W (�l , p + i) = U0(�l)Rz(iπ )Rx (−χ ).

3.4.4. Restriction to a subspace, the measured signal. We
now use Eq. [25] with σz = σ (1, 0), and we find that the mag-
netization at echo p + i is

σ (�l , p + i) = U0(�l)σ (cos(χ ), (−1)i j sin(χ ))U ∗
0 (�l).

We are interested principally by the transverse component of
this vector. Remembering the definition of the scalar CK param-
eters ul , vl of U0 shown in Eq. [29], the transverse magnetization
component can be expressed as

X (�l , p+i) = cos(χ )(2ulvl)+(−1)i j sin(χ )
(
ū2

l +v2
l

)
. [36]

The signal we collect is the integral in one crushing pixel, so
the signal X̂ (�0) coming from the considered comb �l = �0 +
l� is obtained by summation over the index l. Performing
this summation in Eq. [36] suggests the use of the following
quantities,
I (�0) = 1

d

d−1∑
l=0

(2ulvl), L(�0) = 1

d

d−1∑
l=0

ū2
l ,
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and

N (�0) = 1

d

d−1∑
l=0

v2
l . [37]

It is time also to remember that the eigenfunctions are de-
termined only within an arbitrary phase and we take this into
account. If exp(− jψ0/2) is the arbitrary phase factor applied
to the 	u− j eigenfunction, the above coefficients L and M are
multiplied by exp( jψ0) and exp(−ψ0) respectively, and we can
write Eq. [36] in the form

X̂ (�0, p + i) = cos(χ )I + (−1)i j sin(χ )O; [38]

with

O(�0) = e jψ0 L + e− jψ0 N . [39]

One cannot choose the coefficients I , L , N . They depend
only on the frequency reference �0, the sweep velocity �, and
the rotation angle θ of the refocusing pulses used. According
to Eq. [38] the signal generated by an initial transverse magne-
tization aligned with the reference axis x is constant along the
echo train and given by I , while an initial transverse magnetiza-
tion along the axis y will generate a signal changing sign every
other echo with complex amplitude O . By doubling each phase-
encoding value or, equivalently doubling the field of view along
the phase-encoding direction, the two signals coming from the
same geometric position will be separated. But to recover the
two components of the object with equal accuracy and with an
efficiency close to the one obtained in the CPMG case, one must
have |I | � |O| � X̂ cpmg, where X̂ cpmg = sin(θ/2).

3.4.5. Choosing ψ0 . O depends on ψ0 which must be set.
It is found that, for the large value of d that we will use, the va-
lues of |I |, |L|, |N | do not vary substantially for different combs
(different �0). This is demonstrated by simulation in Fig. 4,
where several comb values are superimposed. One possible ex-
planation is that, once the frequencies �l are mapped into one
pixel with increasing resonant frequency, and if dθ2 � 1, the
functions u(�k), and v(�k), form two very smooth functions
in regard to the comb step 2π/d . Then, on another comb, with
�0 distant from the first by less than the step 2π/d , the eigen-
function is probably almost an interpolation of the first one and
very close to it. That is not a demonstration, but this is the only
justification we have for now. Assuming the relative indepen-
dence of the eigenfunctions from �0, one can demonstrate (and
this is verified in Fig. 4) that |L| = |N |, by using a symmetry
that the eigenfunction 	u− j verifies at frequencies � and � + π

(see Appendix C). If |L| = |N |, varying the phase ψ0 will make

the coefficient O describe a line segment in the complex plane;
for only two values separated by π will the magnitude of this
O coefficient be maximum.
E ROUX

FIG. 4. The magnitude of the signal coefficients |I |, |L|, and |N | for a sweep
velocity � = 2πn/499. d = 499 being a prime number, n has been varied from
1 to 499 without having to worry about common divisors between n and d. The
rotation angle of the refocusing pulses was θ = 2 radians (114.6◦). Four different
combs (�0) have been simulated for each value of � and each coefficient. No
significant difference is seen and the curves for different �0 are superposed
on each other. Also, the curves relative to L and N are indistinguishable from
each other. Thus after suitable phasing of the eigenfunction the oscillating signal
|I | coefficient can be made equal to |2L| = |2N |. There are only two ranges of
� values (four if one counts the negative counterparts) around 0.19 × 2π and
0.31 × 2π for which the constant signal and the oscillating signal are of same
magnitude. Note that � = 0.25 corresponds to the {XY − 4} (5) modulation and
is probably the worst possible choice, at least in terms of signal magnitude, at
this already small refocusing angle.

In practice this signal maximum is also attained when the
choice of phase ψ0, for all different combs, renders the function
u(�), v(�) the smoothest. In turn, that is achieved when each
comb phase ψ0/2 is turned such that the resulting eigenvector
exp(− jψ0/2) × 	u− j (�l), l = 0, d − 1 is closest (in the sense
of least squares) to the − j eigenfunction of the perfect π case,
[1, 1]t/

√
(2)

e jψ0/2 = Euv/|Euv|, Euv =
d−1∑
l=0

(ul + vl). [40]

As an example, Fig. 5 gives the eigenfunction − j for the
sweep velocity � = 2π × 957/4999 and for θ = 2 radians, after
having phased by Eq. [40] four different combs.

3.4.6. Choosing the sweep velocity �. Although the mathe-
matical derivation is a bit involved, one must realize that the nu-
merical computation of the − j eigenfunction as written above,
and the associated signals I , O , for a given θ and a given �, is
very fast on modern computers, even for a denominator d very
large. Very large d are necessary for small refocusing angles θ .

The lower the refocusing angle, the more difficult it is to have
quasi-equality between |I | and |O|. Taking d = 4999 which is
already a large number but also a prime, one can vary n and
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FIG. 5. One component (u) of the − j eigenfunction for � = 2π×957/4999
and θ = 2 radians, at an even echo. Four different combs were used, each one
with a phase factor adapted to minimize the mean square error with the − j
eigenfunction of the ideal θ = π case also shown on the drawing. The second
component is deducible from the first by the �,� + π symmetry exposed in
Appendix C.

try to find its value(s) for which |I | and |O| are the closest to
each other. One such value is n = 957, �̂ = 2π × 957/4999,
or 2π × 0.19144, for which the values of |I | and |O| for a
large range of refocusing angles θ are shown in Fig. 6. Other

values are n = 1543 (corresponding approximately to π − �̂,

i i i−1
or � = 2π × 0.30866) or n = 3456 (corresponding to π + �̂, (with c = cos(θ/2), s = sin(θ/2)) gives a sequence of 	wi (�, θ )
FIG. 6. The magnitude of the signal coefficients I and O for n = 957 and d
and |O|. The inset represents the phase of the signal coefficients as a function of th
1.5 radian the phase variation is small (below 20◦). Also, the two phase angles are
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or � = 2π × 0.69134). Obviously, the results for n = 956 or
n = 955 are not very different when θ is greater than one radian,
but differences appear at small refocusing angles. Admittedly,
this is presently a rather futile discussion, as one needs first to
be able to determine the preparation P in order to put the system
into the desired subspace [see Eq. [35]], and as will be seen now,
we succeeded in that only for θ above 2 radians. Still, it is useful
to have a target eigenfunction for the preparation period giving
suitable signals, even for small refocusing angles.

3.5. Preparation Period

In this subsection we will have to represent the rotation start-
ing from thermal equilibrium, at each frequency �, Wi (�) in
SU2 form, at echo number i . Still, for notational simplicity, rather
than following the evolution of the Wi (�) matrix, we will follow
only its first column vector (or spinor, or CK parameters), noted
	wi (�). For d sufficiently large, one can consider now that we
have defined 	u− j (�, θ ) = [u, v]t continously for 0 < � ≤ 2π ,
as shown in Fig. 5, and that for a sufficiently dense collection
of θ (for instance θ = 3, 2.8, 2.6 . . . radians). Our aim is now to
find a sequence of sweep velocities �i , i = 1. . .p such that the
recursion in Eq. [10], written in spinor form

	w (�, θ ) = Q(c exp( j�), − js)S(� ) 	w (�, θ ),
= 4999 for θ = 0.1 . . . 3 radians. There is a ±3% possible variation between |I |
e nutation angle. We note that the phase is not null, but for nutation angles above
almost opposite, i.e., the average of both phases is almost independent of θ .
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which tends rapidly toward the eigenfunction (− j)i 	u− j (�, θ ),
when the initial condition is w0 = [1, 1]t/

√
2 (which is the spinor

representation of the excitation pulse Ry(π/2)). The factor (− j)i

is to take into account the natural evolution of the eigenfunction.
Actually it is better to include that factor in the evolution equation
of the state vector 	wi itself, following the evolution of j i 	wi

which ideally should tend toward the constant function 	u− j .
Then Eq. [10] is replaced by

	wi (�, θ ) = j Q(c exp( j�), − js)S(�i ) 	wi−1(�, θ ), [41]

and we can take

J (�i ) =
p∑

i=1

gi

∑
θ

∫ 2π

0
|	u− j − 	wi |2(�, θ ) d�

as the cost function to be minimized. gi is a weight to more
strongly emphasize the end of the preparation interval than its
beginning. The internal quadratic term of the cost function is
simplified, due to the normalization |u− j |2 = |wi |2 = 1, leaving
only a term Re(	u∗

− j 	wi ). But as both j i 	u− j and 	wi are realizable
by a π/2 excitation pulse followed by a train of echoes, they must
satisfy a symmetry between � and � + π (see Appendix C),
and one can show that

∫ 2π

0 	u∗
− jwi d� is real. Hence the cost

function is simply

J (�i ) =
p∑

i=1

gi

∑
θ

∫ 2π

0
	u∗

− j 	wi (�, θ ) d�. [42]

This is a problem of optimal control of a nonlinear system
(although the cost function is linear). Still the system can be
linearized and the optimization of the loss function performed
by a classical quasi Newton procedure (16), without of course
the guarantee that the global minimum is found.

3.6. Resulting Optimal Phase Modulation

The simplest result was obtained by optimizing the cost func-
tion of Eq. [42] for only θ = 2.8 radians (and for �̂ = 2π ×
957/4999). The preparation period was fixed to seven echoes,
and with only a terminal loss function obtained by setting
gi = 0, i = 1. . .6, g7 = 1. The optimal parameters �i are given
in Table 1. The frequency sweep δi can be obtained by Eqs. [11]
and [12]. Setting by convention the receiver phase at echo zero
φr0 = 0, the first emission phase φx1 is computed using Eq. [3];
and from that the receiver phase at the first echo φr1 by Eq. [4];
and recursively all other emission and reception phases.

The in phase and out of phase component responses, calcu-
lated whether by the density matrix, or simply by the Bloch
equations are shown in Fig. 7. Although the stabilization does
not seem perfect, one can compare this result with what is ob-

tained with the XY − 4 modulation (5) shown in Fig. 8. We see
already that at 160◦ refocusing angle, the XY − 4 modulation
E ROUX

TABLE 1
Optimal Sweep Velocities for a Preparation

Period of Seven Echoes

i �i

1 0.191438
2 0.192650
3 0.225601
4 0.197626
5 0.129640
6 0.197671
7 0.282091
8. . . 957/4999

Note. Starting from the eighth interval, the sweep
velocity becomes constant.

does not give a sustained signal. Further, the spurious modula-
tion is also very large. At 140◦ and below, the signals are chaotic.
One advantage of the XY − 4 modulation may be that the out
of phase signal and the in phase signal are identical, but clearly
this modulation scheme should not be used below 170◦.

FIG. 7. The signals generated by an initial magnetization aligned, at echo
zero, with x (in phase component) or by an initial magnetization aligned with

y (out of phase component) for refocusing angles θ = 2.8, 2.4, 2.0 radians (ap-
proximately 160, 140, 115◦), with the sweep velocities given in Table 1. Both
the real and imaginary parts of the signals are depicted.
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FIG. 8. The signals generated by the in phase component with the XY − 4
modulation for refocusing angles θ = 2.8, 2.4, 2.0 radians. The signals generated
by the out of phase component are strictly identical.

We have tried other cost functions over a larger range of θ

and longer preparation period. The results may be better than
those presented here but only marginally so. Hence at present,
the phase modulation given in Table 1 is our best choice. Also
note that the modulation used in (9), and whose values are given
in (10), is less effective than the modulation given here. Indeed
that modulation was determined along with a possible refocus-
ing angle modulation (i.e., amplitude and phase modulation of
the RF train) of the first three RF pulses. When allowing an am-
plitude modulation, three pulses are even more efficient than the
seven phase modulated pulses presented here and the signals are
better stabilized. But in practice, making the refocusing angle
vary, implies designing different refocusing pulses for each echo
as we did in (17). This is not a simple task and in (9) we used
only the phase modulation part making the result suboptimal.
In future we may have to revert to amplitude and phase mod-
ulation but this needs careful design of RF pulses and also an
assessment of the sensitivity with regard to B1 inhomogeneity
or calibration errors.

4. PRINCIPLE OF THE RECONSTRUCTION

The experimental result shown below is an imaging experi-
ment and we have to explain, even if it is not in the most extreme
details, how the echoes are used to form an image.

A sustained spin-echo experiment, as the one we have in hand,
where one magnetization component stays constant and the other
magnetization gives way to an alternating signal, imposes a re-
construction different from the classical 2DFT or 3DFT which is
used with a CPMG experiment (18). In (8), we proposed to dou-
ble each phase encoding: two consecutive echoes are acquired
with the same encoding value. The reason why we must repeat

the same phase encoding twice stems from another parameter
we have not yet taken into account the “spurious receiver phase,”
which comes in addition to the object phase χ .
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Let the initial transverse magnetization at echo zero, and in a
given voxel, at any position in space ξ = (x, y, z) and of volume
dξ , be d X0(ξ ):

d X0(ξ ) = ρ(ξ )e jχ (ξ ) dξ

= (ρx (ξ ) + jρy(ξ )) dξ.

Then the average magnetization in this voxel at echo p + i ,
and thus also the signal originating from the considered voxel
would be, according to [38], and supposing that the signal coef-
ficients I (i) and O(i) are stationary (I (i) = I, O(i) = O)):

d X̂ (p + i, ξ ) = (Iρx (ξ ) + (−1)i × O jρy(ξ )) dξ. [43]

But, actually we cannot identify this element of transverse
magnetization with the signal that we receive from that element
of volume. Indeed we must write this element of signal d S in
the following manner:

d S(p + i, ξ ) = e jϕ(ξ ) d X̂ (p + i, ξ )

= e jϕ(ξ )(Iρx (ξ ) + (−1)i × O jρy(ξ )) dξ. [44]

The phase factor exp( jϕ) is due to a possible phase error be-
tween the emission and the reception. Indeed we have defined
the rotating frame uniquely in terms of the emitting field, and set
the receiving phase in accordance to that field. But a spurious
phase in the receiver may add itself to the signal phase. This
could easily be corrected if this phase were a constant. But this
phase can be dependent on the resonant frequency (due for ins-
tance to the antialiasing filter), and the correction may become
more complicated. But more dramatically, the phase error ϕ can
be space dependent, and particularly depends also on the position
along the phase encoding direction(s). This is indeed the case if
one uses two separated coils for emission and reception: ϕ(ξ )
then represents the angle between the B1 receiving field (pro-
jected on the plane perpendicular to the main field) and the B1

emitting field (also projected). Another source of possible space
dependent phase error is the action of eddy currents during the
read period of each echo. A priori, ϕ(ξ ) is varying slowly in
space but it can easily account for some tens of degree variation
in one field of view. We show now that this suffices to oblige us
to repeat twice the same encoding value. For simplicity we con-
sider a 2D image acquisition (not a 3D one). We suppose that
we use a classical 2DFT encoding-reconstruction scheme with
the encoding value increasing linearly between each echo: the
increment between each encoding step is linked to the maxi-
mum extension of the field of view along the phase-encoding
direction, that we denote by 2yM , and the magnetization at the
positions y = ±yM change sign every echo under the influ-
ence of that encoding. If now we consider Eq. [43] as repre-

senting the right model, we can deduce without writing any
further equation that we will obtain the following reconstructed
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image ρr

ρr (ξ ) = I ρ̂x (x, y) + O j ρ̂ y(x, y + yM ), [45]

where ρ̂x and ρ̂ y are low pass filtered versions of the two compo-
nent of the object. There is aliasing between the position x, y and
the position x, y + yM . But one may argue that the two aliased
values at the position ξ = x, y are in quadrature to each other:
I ρ̂x (x, y) and j Oρ̂ y(x, y+ yM ) and could be separated (if I and
O are without phase, which is approximately the case accord-
ing to Fig. 6). Unhappily the phase factor exp( jϕ(ξ )) renders
this idea inapplicable. It is easily found that, with the true signal
expression [44] and still with a classical 2DFT phase encoding
scheme, the reconstructed image becomes

ρr (ξ ) = I ρ̂x (x, y)e jϕ(x,y) + O j ρ̂ y(x, y + yM )ejϕ(x,y+yM ). [46]

It suffices here to consider the degenerate case: it corresponds
to the case where the spurious receiver phase at position x, y and
the spurious receiver phase at position x, y + yM , have a differ-
ence of π/2! Then the two magnetization elements ρ̂x (x, y) and
ρ̂ y(x, y + yM ) emit two indistinguishable signals (if the signal
coefficients I and O have the same phase; otherwise one could
find another value for the receiver phase difference) and thus the
two magnetizations are irremediably aliased.

To counteract that, we use the same phase encoding for two
subsequent echoes i and i + 1, then adding and substracting
the two signals, S1(p + i) = S(p + i + 1) + S(p + i), S2(p +
i) = S(p + i + 1) − S(p + i), we obtain from [44]

d S1(p + i) = 2I e jϕ(ξ )ρx (ξ ) dξ,
[47]

d S2(p + i) = 2 j Oe jϕ(ξ )ρy(ξ ) dξ.

Because the two quantities 2I exp( jϕ(ξ ))ρx (ξ ) and 2O
exp(ϕ(ξ ))ρy(ξ ) have a phase which is varying in space very
slowly we can acquire and reconstruct each one, separately, by
a half k-space (homo-dyne) acquisition-reconstruction (19).

5. EXPERIMENTAL RESULT AND DISCUSSION

The principle of the quadratic phase modulation, with a well
chosen sweep velocity � and after a suitable preparation, has
now been validated. It has been used on volunteers not only for
spine diffusion imaging (9), but also for diffusion tensor imag-
ing in the head (20), T2 and T ∗

2 sensitization (21), and even for
phase shift thermometry (22). Admittedly these studies were
not used with the new preparation period presented here. The
effectiveness of this new modulation scheme is verified here on
a phantom and this is depicted in Fig. 8. This is a single shot
acquisition, where we have forcibly induced a phase variation
in the object by inserting a gradient blip between the excitation

RF pulse and the echo 0 reference time. Another side of the de-
velopment which is worth mentioning has been the evolution of
E ROUX

the reconstruction program. In the first volunteer study (9) we
performed the half k-space acquisition the usual way, and the
number of k-lines acquired in the complementary half k-space
was relatively high (6 to 8 over-scan lines) in order to identify
the spurious receiver phase ϕ. As we must double each phase
encoding, this resulted in a much delayed minimum echo time
(12 to 16 echo spaces, or in the order of 60 to 90 ms increase
in minimum echo time on a whole body scanner), and the gain
in signal to noise ratio compared to the Alsop solution (4) was
often entirely lost, due to T2 relaxation. The other studies, in-
cluding the present one, have used an acquisition–reconstruction
scheme, where an independent acquisition permits characteriz-
ing the receiver phase ϕ with very good precision (actually using
a full k-space acquisition); then during the normal acquisition,
we just have to correct for the phase ϕ, not characterize it, and
the number of over-scan lines can be reduced to 2. Still, if this
allows us to retain a substantial portion of the signal coming
from short T2 species, it does not reduce the blurring associ-
ated with the signal slope in the k-space (see Fig. 9 caption).
Against this, the only two options are using multishot acquisi-
tion or finding a way to traverse the k-space more rapidly. But, at
least for diffusion imaging, multishot acquisition is only feasible
if this acquisition can acquire and compensate for the random,
shot dependent, object phase modulation χ . Recently Pipe et al.
(23) proposed such a self-navigated acquisition. Let us note that
these authors used an XY quadratic phase. They did not double
each phase encoding and their scheme will probably not work,
as is, with distinct emitting–receiving coils. Another route that
may be envisioned is to couple the here presented non-CPMG
acquisition–reconstruction scheme with coil sensitivity encod-
ing (24). Normally, once the two real and imaginary responses

FIG. 9. Magnitude (a, d), real part (b, e), and imaginary part (c, f) of an
object with a variable phase χ that we have induced by a gradient blip interposed
between the excitation pulse and echo zero. This gradient was applied along the
phase encoding direction, left to right. In (a, b, c) this gradient was nulled and in
(d, e, f) its amplitude was calculated to induce, approximately, a 2 × 2π phase
variation in the field of view (FOV) extension along y. The phase variation in
(a, b, c) may come from a spurious object phase χ , but may as well, and more
probably, be due to a receiver phase ϕ. This is the reason why we show two
acquisitions, one acquisition not being sufficient proof of the efficiency of the RF
phase modulation to obtain independency with respect to the initial phase of the
magnetization. The acquisition was single-shot. The FOV was 260×130{mm}2

for a matrix 256 × 64. Two over-scan lines were acquired and thus a total of
(32 + 2) × 2, or 68 echoes were acquired, lasting around 340 ms. The object

at bottom has a T2 on the order of 200 ms, whereas the top cylinder is filled
with tap water with a T2 greater than 1500 ms. Note the higher blurring of the
reconstructed short T2 object in comparison to the water cylinder.
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are separated by the double acquisition as in Eq. [47], the sen-
sitivity encoding scheme can be applied independently.

6. CONCLUSION

We presented the mathematical basis for the use of quadratic
phase modulation to generate a train of spin echoes which is
almost completely insensitive to initial phase. Although not yet
perfect this approach has already proven useful in practice. Fu-
ture progress may rely on the background presented here.

APPENDIX A

LetR(�d ) = Q(α, β). We separate the real part αr of α = αr +
jαi , and put − j as a factor of a vector matrix R(�d ) = αr 1 −
jσ (−αi , jβ). Then we normalize the vector part, in order to
put the rotation matrix in the form of Eq. [26]. For that, we de-
fine S =

√––––––––––|β|2 + α2
i and write R(�d ) = αr 1− jSσ (z, X ) with

z = −αi/S, X = jβ/S. Then we factor the vector matrix σ (z, X )
in UσzU ∗, with U = Q(u, v). We must verify simultaneously:
|u|2−|v|2 = z, 2ūv = X . This is a classical problem which leaves
a phase indetermination (linked to the phase indetermination of
an eigenvector); we choose to have the first component real and
find u = √

(1 + z)/2, v = X/
√

2(1 + z).

APPENDIX B

The Z transform approach, in addition to the SU2 formalism,
is the basis of the so-called Shinnar–LeRoux algorithm (15).
We want to find the cycle rotation matrix, but this time for any
frequency �, not just for one comb of frequencies. We show
that we can express this rotation in terms of polynomials of
the variable Z = exp( j�). We write Eq. [10] using the SU2

representation of the central rotation by Eq. [27] but using Z as
notation for exp( j�)

Ri (�) = Q(cZ , − js)Ri−1(� − �),

for i = 1 . . . .
With the initial condition, at echo zero R0 = Q(1, 0). We

need only follow the first column αi , βi (or Cayley–Klein pa-
rameters) of the SU2 rotation matrix Ri (�) = Q(αi (�), βi (�)).
Let us develop the two components αi (�), βi (�) in a se-
ries, possibly infinite, of powers of Z (or otherwise stated,
take the inverse Fourier transform of these two quantities):
αi (�) = ∑∞

k = −∞ αi,k Z−k, βi (�) = ∑∞
k = −∞ βi,k Z−k . The shift

in frequency by � is simply expressed in terms of the co-
efficients αi,k, βi,k by a local multiplication by the power of
w = exp( j�), α′

i,k = wkαi−1,k, β
′
i,k = wkβi−1,k . The central ro-

tation part involves a shift by plus one or minus one and a combi-
nation: αi,k = cα′

i,k+1 − jsβ ′
i,k, βi,k = − jsα′

i,k +cβ ′
i,k−1. We then
arrive at a recursion on the time domain coefficient very similar
to the one used in the (direct) SLR transformation. This way,
one can simulate very precisely the response of the system even
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for an arbitrary phase modulation (i.e., even when � is variable
with i).

But for now, we use these equations for obtaining some
very simple results. We have the initial condition α0,k =
0k �= 0, α0,0 = 1, β0,k = 0 ∀k. Without entering the detail of the
calculus let us make one or two steps of the just defined recur-
sion, only to discover what coefficients are not zero. At echo 1 we
have: α1(Z ) = cZ , β1(Z ) = β1,0. At echo 2 the polynomials have
the form α2(Z ) = c2 Z2 + α2,0 and β2(Z ) = β2,1 Z−1 + β1,−1 Z .
One can infer, and verify by recurrence that at echo number
i , αi (Z ) = Zi a(Z−2), βi (Z ) = Zi−1b(Z−2), where a, b are poly-
nomials of order 0 . . . i − 1 of the variable Z−2.

We have some interesting symmetry properties to derive from
this. At even echo i number, α has only even order powers of
Z , whereas β has only odd order powers, these properties being
swapped at odd echo. The consequence in the frequency do-
main is that, for echos with even index, α2p(� + π ) = α2p(�),
whereas β2p(�) = −β2p(�+π ). Conversely, at odd echo num-
ber N = 2p + 1, the symmetry is reversed α2p+1(� + π ) =
−α2p+1(�), β2p+1(�) = β2p+1(� + π ).

Another easy result is the value of the “leading term” αN ,−N

(also the zero order coefficient of a). In the recursion it is
never combined with any other coefficient and its value at echo
N is easily derived: αN ,−N = cN × (1 × w · · · × wN−1), or
αN ,−N = cN exp( j�N (N − 1)/2).

If we now consider one complete cycle of the modulation,
N = d, if � = 2πn/d, one has simply αd,−d = cd , with, we
recall, c = cos θ/2. Consider now the real part of αd (Z ), but
seen in the � domain. Recall that according to the spinor rep-
resentation this is equal to cos(�(�)/2), where �(�) is the
rotation angle of the cycle rotation. This cycle rotation is the
same for all the frequency positions belonging to the same
comb � = �0 + l × 2πn/d. Hence Re(αd (�)) is, in the an-
gular frequency domain, a periodic function of period 2π/d;
otherwise stated, in the time domain, Re(αd (Z )) contains only
coefficients of powers Zd : . . . Z2d , Zd , 1, Z−d , Z−2d , . . . . But
αd (Z ) has terms of Z powers only in the range d, −d +1. Hence
Re(αd (z)) can only be in the form (cd Zd + α0 + cd Z−d )/2 or
Re(αd (Z )) = cd cos(d�) + α0.

Consider now d odd. In this case the comb relative to �0 and
the comb relative to �0 + π are distinct and interlaced (sepa-
rated by π/d), and also, according to the symmetry property,
α2p+1(� + π ) = − α2p+1(�), so Re(α) changed sign between
the two combs, and thus the constant term α0 must be null.

Finally, the cycle rotation angle is given by cos(�(�)/2) =
cd cos(d�). For d sufficiently large cd is very small, even when
c is large (θ small), and thus the cycle rotation angle � is
close to π .

APPENDIX C

From Appendix B we know that the Cayley–Klein parame-

ters (or spinor components) αi , βi of the integrated rotation Ri

have symmetry relations between the position frequency � and
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the frequency � + π . This has been derived with � = constant
but it is true for any variable sweep velocity. Let us consider
Wi the rotation from thermal equilibrium to echo i ; we must
include Ry(π/2) in front of Ri and even a rotation Rz(χ ), giv-
ing Wi =Ri Rz(χ )Ry(π/2). Let α−,i , β−,i be the CK parameters
of Wi . A simple calculation shows that the symmetry on αi , βi

induces the following symmetry: α−,i (� + π ) = β̄−,i (�), β−,i

(� + π ) = ᾱ−,i (�), if i is even. If the echo number is odd the
same relations apply but with a minus sign added. The impor-
tant point is that the eigenfunction 	u− j (�) must satisfy these
symmetries if we want to be able to attain it by π/2 excitation
followed by a train of echoes!

We now verify that it is indeed the case, at least when d is
odd. When d is odd, if Rd (�) is in term of its CK parame-
ters, Rd (�) = Q(αd , βd ), then Rd (� + π ) = Q(−αd , βd ). And
one verifies that if Rd (�) can be decomposed in eigenvectors
by Q(αd , βd ) = U�U ∗ with U = Q(u, v) then Rd (� + π ) can
be decomposed in Q(−αd , βd ) = V (−�̄)V ∗ with V = Q(v̄, ū).
Also as the eigenvalues of the cycle rotation are, for d suffi-
ciently large, close to j, − j , we can choose for the eigenfunction
relative to − j , on the comb �0: 	u− j (�0) = [u, v]t and on the
comb �0 + π : 	u− j (�0 + π ) = [v̄, ū]t . Thus realizing a spinor
function which corresponds to an even echo attainable from ther-
mal equilibrium (we say realizable). If we apply a phase factor
exp(− jϕ0/2) on one comb, we will apply exp( jϕ0/2) on the
other comb to keep the consolidated function 	u− j (�) realizable.
Note that the evolution of 	u− j from echo to echo being reduced
to a simple multiplication by − j , at the next echo (odd echo),
the other type of symmetry is automatically obtained. Also, the
symmetry on the CK parameters (spinor component) induces
the following symmetry on the magnetizations coefficients:
I (�0 +π ) = I (�0), L(�0 +π ) = L(�0), N (�0 +π ) = N (�0).
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